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Time and length scales for diffusion in liquids
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The first six even moments of the displacement of a molecule in water and an atom in liquid argon are found
by molecular dynamics simulations and compared with the moments predicted by diffusion theory. We find a
noticeable difference between the moments higher than the second. The ratio between predicted and calculated
moments approaches unity as 1/t for times larger than 10 ps. Continuous time random walk is used to explain
this slow approach of the moments to their diffusion limit.
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Motion of individual molecules in liquids is a classic e
ample of the many-body problem. It is well known, howev
that at sufficiently large times this motion is well describ
in terms of ordinary diffusion. Thus, at these times the ma
body problem reduces to a one-body stochastic problem
which all many-body effects are hidden into a single numb
the diffusion constant. The question we analyze in this pa
is which times can be considered as sufficiently large to co
fortably use the language of diffusion? This question may
of importance for understanding the processes occuring
picosecond time scales and angstrom length scales.

It should be noted that in contrast to gases and crysta
solids there is no well established picture of molecular m
tion that underlines self-diffusion in liquids@1–4#. Our
analysis suggests that at intermediate times the molec
motion can be described in terms of a random walk, which
due to jumps of the liquid’s configuration from one loc
minimum of the multidimensional potential energy surface
another. The idea that diffusion in liquids occurs as a re
of such jumps was put forward by Zwanzig@5#. Rabani, Ge-
zelter, and Berne recently used the Zwanzig model to ca
late the self-diffusion constant of argon and CS2 in regular
and supercooled regimes@6#. They found excellent agree
ment between the self-diffusion constants calculated on
basis of the Zwanzig hopping model and those calculated
the Einstein relation,D5 lim

t→`
^@r (t)2r (0)#2&/6t, over a

wide range of temperatures and densitites.
Our analysis is based on particle trajectories calculated

means of molecular dynamics~MD! simulations for two dif-
ferent model systems: a Lennard-Jones liquid~argon! and
SPC/E water@7#. In the case of argon we have simulat
2048 atoms at a temperatureT594 K and a densityr
51.36 g/cm3. In the case of water we considered 256 m
ecules, atT5300 K andr50.998 g/cm3 @8#.

The time dependencies of the velocity autocorrelat
function^va(t)va(0)&m/kBT and of the diffusion coefficien
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D(t)50.5d^x2(t)&/dt5*0
t dt8^va(t8)va(0)&, shown in Fig.

1, suggest that diffusion is a proper language for times lar
than 2 ps. Similar estimates can be found in the literatu
see, for example, p. 192 in Ref.@1#. It will be shown, how-
ever, that these estimates are too optimistic and strong de
tions from the behavior predicted by the diffusion theo
occur at much longer times.

To decide whether the motion can be described in te
of diffusion or not, one can compare the exact propaga
found by simulations with the propagator predicted by t
diffusion theory~using the diffusion constant found by simu
lations!. Alternatively one can compare the moments of t
displacement. We choose the second way and conside

l.
s: FIG. 1. The normalized velocity autocorrelation function~solid
curve! and the time dependent diffusion coefficientD(t) ~dashed
curve! for ~a! argon and~b! water.
©2002 The American Physical Society01-1
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ratio of the moment̂ x2n(t)& found by simulations to the
same moment predicted by the diffusion theory,^x2n(t)&d
5@(2n21)!! #(2Dt)n. This ratio, Rn(t)5^x2n(t)&/
^x2n(t)&d , tends to unity ast→` since the motion become
diffusion at large times. At small times, when the motion
ballistic, ^x2n(t)&}t2n andRn(t) vanishes ast→0. The ratio
Rn(t) is closely related to the non-Gaussian parameteran
introduced by Rahman@9# and often used in studies of su
percooled liquids and glasses.

Since a precise determination of higher moments of d
placement is a delicate statistical problem, we have exten
our MD calculations to rather long times. In the case
argon the length of the trajectory was 100 ns, whereas in
case of water it was 30 ns. In order to avoid statistical a
facts in the displacement calculation we choose awindow
method, where only after time intervals ofDt510 ps a new
displacement vector is filled for further analysis.

The dependenciesRn(t) are nonmonotonic as shown i
Fig. 2. The ratio grows rapidly at smallt, reaches its maxima
value, and then decreases slowly to unity. The larger thn,
the greater is the maximal value ofRn(t). The deviations
from what diffusion theory predicts are much stronger

FIG. 2. The ratioRn(t) (n54,5,6), characterizing the nondiffu
sion behavior for~a! argon and~b! water. The inset shows the 1t
long time behavior.
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water than for argon. The maximum value ofR6(t) is ap-
proximately 220 in water, while in argon it is'5. Note that
in water R6(t) reaches its maximum at times that are ve
similar to the characteristic lifetime of the hydrogen bo
@10#. Table I gives the ratio att52 ps when the diffusion
coefficient has reached the plateau value~Fig. 1!.

As t→`, Rn(t) slowly approaches unity. We found tha
at times between 10 ps and 80 ps allRn(t) are well repre-
sented by the dependence

Rn~ t !5
^x2n~ t !&

@~2n21!!! #~2Dt !n
511

bn

t
~1!

with coefficientsbn given in Table II. Figure 3 illustrates the
quality of this approximation. Att510 ps, deviations from
the results predicted by the diffusion theory approximat
are 18% and 5% inR2 , 40% and 16% inR3 , 72% and 33%
in R4 , 118% and 56% inR5, and 183% and 87% inR6 for
water and argon, respectively. Thus the deviations are w
pronounced att510 ps. Note that the long time tail dis
cussed in the present paper should not be confused with
long time tail in the decay of the velocity autocorrelatio
function discovered by Alder and Wainwright@11#.

In order to rationalize the 1/t behavior ofRn(t) we use a
continuous time random walk~RW! model for molecular
motion. We assume that the random walk is Markovian a
the probability density for the waiting time between succ
sive steps is exponential, i.e.,f(t)5k exp(2kt), wherek21

is the average waiting time. The second characteristic of
random walk is the probability density for the step displac
ment ~sd!, p(x), which is assumed to be a symmetric fun
tion of x, i.e., p(x)5p(2x). Consequently all odd moment
of the displacement are zero while even moments are fin

^x2n~ t !&sd5E
2`

`

x2np~x!dx. ~2!

For this random walk the diffusion constant is found to
D5k^x2&sd/2. For larget, kt@1, we find

TABLE I. Ratio Rn(t) between the moments of the displac
ment found from simulation data and predicted by the diffus
theory at timet52 ps.

R2 R3 R4 R5 R6

H2O 1.75 3.0 5.6 11.9 27.3
Ar 1.15 1.4 1.9 2.8 4.4

TABLE II. Coefficientsbn from Eq. ~1!. Errors ~shown in pa-
rentheses! were estimated by fitting theRn(t) over different time
intervals.

b2 b3 b4 b5 b6

H2O 1.8 ~0.1! 4.0 ~0.1! 7.2 ~0.2! 11.85~1.0! 18.3 ~2.8!
Ar 0.45 ~0.02! 1.54 ~0.08! 3.2 ~0.1! 5.7 ~0.1! 8.9 ~0.1!
1-2
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^x2n~ t !&RW.@~2n21!!! #~2Dt !nF11
n~n21!^x4&sd

6^x2&sd
2 kt

G .

~3!

This leads toRn(t) of the form given in Eq.~1! with

bnuRW5
n~n21!^x4&sd

6k^x2&sd
2

. ~4!

According to Eq.~4! the ratio between coefficients is simp
given by

bn11

bn
5

~n11!

~n21!
~5!

independent of the parameters of the random walk. To
this prediction we calculated the ratiobn11 /bn using bn
from Table II. The results, given in Table III, show that th
random walk model not only correctly predicts the long tim
behavior of Rn(t) in Eq. ~1!, but it also reasonably wel
predicts the ratio of the coefficientsbn11 /bn .

Thus, the simulations suggest that between the e
many-body description of motion of molecules in liquids a

FIG. 3. The ratioRn(t) (n54,5,6) vs inverse time, demonstra
ing the 1/t behavior for~a! argon and~b! water. Dotted lines repre
sent Eq.~1! with coefficientsbn taken from Table II. Error bars are
shown exemplary for selected points.
06020
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the hydrodynamic one based on the diffusion equation, th
is an intermediate region where the motion is described
terms of a random walk.

To get an idea of the parameters of the random walk
assume that all steps have the same lengthl and all directions
for the step are equally probable, i.e., we consider Pears
random walk@12#. In this casê x4&sd /^x2&sd

2 51.8 and the
expression in Eq.~4! takes the formbn50.3n(n21)/k. This
relation can be used to estimate the average timek21

510bn /@3n(n21)#. Using bn given in Table II we obtain
k21.2 ps for water andk21.1 ps for liquid argon. We
use thesek21 and the diffusion constants found in our sim
lations,DH2O50.256 Å2/ps andDAr50.253 Å2/ps, to es-

timate the step length by the formulal 5A6Dk21 ~here we
have used the fact that for Pearson’s random walk^x2&sd
5 l 2/3). This leads tol H2O.1.7 Å andl Ar.1.3 Å.

The length and times associated with the random walk
too small to describe jumps of an individual molecule. W
believe that the random walk is due to jumps of the liquid
configuration from one local minimum of the multidimen
sional potential energy surface~cell! to another as was sug
gested by Zwanzig@5#. From an individual particle point of
view, jumps among cells lead to rearrangements of its eq
librium position. After such a jump the particle starts rela
ation to a new equilibrium. Effectively this can be describ
in terms of random walk with a waiting time that corre
sponds to the time required for the liquid configuration
change. It is not surprising that such random walk has a s
waiting time and small step length. We believe that this p
ture is quite generic and random walk due to jumps amo
the energy minima underlies self-diffusion not only in wat
and liquid argon.

Finally we discuss the relation between our work a
Cao’s analysis of diffusion@13# with the diffusion coefficient
that randomly jumps between two values. In this problem
exact propagator reduces to an ordinary diffusive propag
with an effective diffusion constant ast→`. However, when
t is not large enough there is a difference between the e
and the effective diffusive propagators. It is interesting th
both exact and effective propagators predict the same m
square displacement at all times. But there is a differenc
higher moments that vanishes ast→`. Cao analyzed the
difference in the fourth moments. He showed that the diff
ence approaches zero as 1/t if the probability density for the
waiting time for jumps between different values of the d
fusion coefficient is exponential. Thus, Cao found the sa
1/t relaxation to diffusive behavior in a related, but qui
different problem.

TABLE III. Ratio of coefficientsbn @c.f. Eq. ~1!# predicted by
the random walk model and found from simulations for water a
argon. Error estimates are given in parentheses.

b3 /b2 b4 /b3 b5 /b4 b6 /b5

RW 3 2 1.66 1.5
H2O 2.19~0.1! 1.8 ~0.1! 1.64 ~0.15! 1.56 ~0.27!
Ar 3.4 ~0.2! 2.1 ~0.14! 1.74 ~0.08! 1.58 ~0.04!
1-3
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In summary, in order to establish the range of applica
ity of diffusion for describing motion of molecules in liquids
the higher moments (4212) of the displacement were foun
by MD computer simulations and compared with the m
ments predicted by the diffusion theory. The comparis
showed that the difference slowly decreases with time
cording to a 1/t law. This 1/t behavior can be explained
one assumes the existence of a random walk that after s
ciently many steps leads to diffusion. In this paper we a
lyzed water and argon at some specific conditions. It will
h
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interesting to study whether the behavior we found is univ
sal for a broader class of liquids and a wider range of th
modynamic state points. From our present investigation
conclude that one has to be careful when using the langu
of diffusion to describe motion of molecules on times of t
order of tens picoseconds and lengths of the order of 5 Å
our opinion it is better to describe molecular/atomic moti
in this time and length regime in terms of random walk.

A.M.B. is thankful to A. Szabo and R. Zwanzig for nu
merous and very useful discussions.
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